""" Node definitions for the Cluster4NPU pipeline system. This package contains all node implementations for the ML pipeline system, including input sources, preprocessing, model inference, postprocessing, and output destinations. Available Nodes: - InputNode: Data source node (cameras, files, streams) - PreprocessNode: Data preprocessing and transformation - ModelNode: AI model inference operations - PostprocessNode: Output processing and filtering - OutputNode: Data sink and export operations Usage: from cluster4npu_ui.core.nodes import InputNode, ModelNode, OutputNode # Create a simple pipeline input_node = InputNode() model_node = ModelNode() output_node = OutputNode() """ from .base_node import BaseNodeWithProperties, create_node_property_widget from .input_node import InputNode from .preprocess_node import PreprocessNode from .model_node import ModelNode from .postprocess_node import PostprocessNode from .output_node import OutputNode # Available node types for UI registration NODE_TYPES = { 'Input Node': InputNode, 'Preprocess Node': PreprocessNode, 'Model Node': ModelNode, 'Postprocess Node': PostprocessNode, 'Output Node': OutputNode } # Node categories for UI organization NODE_CATEGORIES = { 'Data Sources': [InputNode], 'Processing': [PreprocessNode, PostprocessNode], 'Inference': [ModelNode], 'Output': [OutputNode] } __all__ = [ 'BaseNodeWithProperties', 'create_node_property_widget', 'InputNode', 'PreprocessNode', 'ModelNode', 'PostprocessNode', 'OutputNode', 'NODE_TYPES', 'NODE_CATEGORIES' ]